منابع مشابه
On Non-cut Sets of Locally Connected Continua
W. L. Ayres and H. M. Gehman have proved independently that if a locally connected continuum S contains a non-cut point p, there exists an arbitrarily small region R containing p and such that S — R is connected. Our paper is concerned with certain generalizations of this theorem. We shall consider a space 5 which is a locally connected continuum and contains a closed set P such that S — P is c...
متن کاملHyperspaces of Peano continua of euclidean spaces
If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L(R) is homeomorphic to B∞, where B denotes the pseudo-boundary of the Hilbert cube Q. Introduction. For a space X, C(X) denotes the hyperspace of all nonempty subcontinua of X. It is known that for a Peano continuum X without free arcs, C(X) ≈ Q, where Q denotes the H...
متن کاملHyperspaces of Closed Limit Sets
We study Michael’s lower semifinite topology and Fell’s topology on the collection of all closed limit subsets of a topological space. Special attention is given to the subfamily of all maximal limit sets.
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولHEREDITARILY INDECOMPOSABLE HAUSDORFF CONTINUA HAVE UNIQUE HYPERSPACES 2XAND Cn(X)
Let X be a Hausdorff continuum (a compact connected Hausdorff space). Let 2X (respectively, Cn(X)) denote the hyperspace of nonempty closed subsets of X (respectively, nonempty closed subsets of X with at most n components), with the Vietoris topology. We prove that if X is hereditarily indecomposable, Y is a Hausdorff continuum and 2X (respectively Cn(X)) is homeomorphic to 2Y (respectively, C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2017
ISSN: 0166-8641
DOI: 10.1016/j.topol.2016.12.004